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Theory of growth by differential sedimentation, with application to snowflake formation
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A simple model of irreversible aggregation under differential sedimentation of particles in a fluid is pre-
sented. The structure of the aggregates produced by this process is found to feed back on the dynamics in such
a way as to stabilize both the exponents controlling the growth rate, and the fractal dimension of the clusters
produced at readily predictable values. The aggregation of ice crystals to form snowflakes is considered as a
potential application of the model.
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[. INTRODUCTION nearest neighbor distance between clusters. In this regime we
can limit our interest to individual binary collision events,
noring spatial correlation. As further simplifying approxi-
ations, we assume that clusters have random orientations
ich do not significantly change during a close encounter,
that collsion trajectories are undeflected by hydrodynamic
%teraction, and that any cluster-cluster contacts result in a

Simple models of cluster-cluster aggregation have bee
the focus of a great deal of interest, particularly over the las
two decades. The structure of aggregates formed through
variety of dominating mechanism®.g., diffusion limited
[2], reaction limited[3], and ballistic motior{4]) have been
\?\}gglfd through theoretical, experimental, and computation ermanent and rigid junction.

. . . In order to sample the collisions between clusters, we first
Anothe_r aggregatlon.mechanlsm' Wh'Ch.'s releyant to S®Vtormulate a rate of close approach. For any two clusteys
erallphysm'al systems is Fhat of differential .Sed'me”tf”‘“"’?wnh nominal radii(see belowr; andr;, respectively, and fall
Particles with a range of size and/or shape will almost mev"speeda;- v, the frequency \INith V\;r,wich their centers pass
I Jl
influence of gravity, leading to collisions. If there is some%Ioser than a distand@; +r;) is proportional to the total area
mechanism t?y wh?/(;h the p%rticles stick c;n contact then ag(_)ver which trajectories yielding a close approach event are
: L ossible, and the relative speed of the pair. This is illustrated
gregates will be formed. An example of this kind of phenom-.?] Fig. 1. The rate constantpfor approagh closer than center-

enon is the aggregation of ice crystals in Cirrus clouds. Smal ) . X
pristine ice particles are formed at the top of the cloud, ando-center separatiofr;+r;) is therefore given by

proceed to fall through it, colliding with one another and Ly = ar(r; +rj)2|vi —vj|. (1)
sticking to produce aggregatésnowflakes . . . .

The aim of this paper is to provide a simple model for IN our computer simulations the nominal radii are chosen to
growth by differential sedimentation which captures the esfully enclose each cluster and the close approach rate calcu-
sential physics of the system in the inertial flow regime, an ated above is exploited to preselect candidate collision
to consider its application to snowflake formation. It is di- €vents. Collisions are accurately sampled by sequentially
vided into five main parts—a description of the model andCn00sing pairs of clusters with probability proportional to
the assumptions underlying it; details of computer simulalij> checking each pair for collision along one randomly
tions and the results obtained from them; a theory sectioﬁamp|ed close apprqach trajectory, and c_orrespondmgly join-
which offers an argument to account for the behavior ob/N9 that cluster pair if they do indeed collide. In the theoret-
served in the simulations; an investigation of the model'sc@ arguments presented in Sec. IV, we make the_S|mpI|fy|ng
applicability to snowflake formation: and a concluding dis- 2SSumption that all close approaches lead to collisionst
cussion. The simulation results and their comparison to redfast a fixed fraction of them glousing nominal radii based

cloud data have been presented briefly in a separate papf fractal scaling from the cluster masses.
[1]. The model is completed by an explicit form for the fall

speeds entering E@l). We assume that the clusters are at
most only partially penetrated by the fluid flow past them, so
that cluster radius is the relevant length governing the drag
II. MODEL L . .
force law. Then qualitatively and by dimensional argument
We focus on the dilute limit, where the mean free pathwe expect the same drag behavior as for a falling sphere,
between cluster-cluster collisions is large compared to thevhich may be written in the form
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length (and masgof unity, and half of which were twice as
long and massive. Purely monodisperse initial conditions are
not possible in this model, sin¢e —v;| would be zero. Apart
from this special case however, it is anticipated that the
asymptotic behavior of the system should be insensitive to
the initial distribution, and indeed the results described in

fall speed v, 7 this section appear to be preserved for a variety of starting
, conditions.
—— In aggregation models it is typically the cageg., Vicsek

and Family[6]) that after the distribution has had time to
forget its initial conditions it will approach a universal shape.

This is usually expressed by the dynamical scaling ansatz,
Total area for

all possible , which states that as),s— o,
close approaches fall speed v, |
=R NV —s(t)‘2¢{£] (5)
: m '
=== s(t)
v v wheren,(t) is the number of clusters of mass at timet,

and the rescaled distributiogt is a function of x=m/s(t)
alone. The quantity(t) is a characteristic cluster mass, and

within a distance(r,+r,) of one anothexa close approaghThe for nongelling systems one expects that a suitable choice is

shaded circle illustrates the total area encompassing all possib@VeN by the weight average cluster masi$) ==mf/ 3m.
close approach trajectoriemiﬂj); Using this choice our simulation data conform well to scal-

ing, as shown in the left panel of Fig. 2.
The shape of the rescaled distribution was studied. A plot
Fa=pud(Re), @ of JZ¢(x')dx’ as a function ofk is shown in the right panel
where f is a function of the Reynolds numb&,=rv/y,  Of Fig. 2 and shows an exponential decay for very laxge
alone,p is the density of the surrounding fluid, amdis the ~ with a superexponential behavior taking over rsap-
kinematic viscosity. Although details of the functidigR,)  Proaches unity from above. This behavior appears to be uni-
should be different from spheres, we still expect to haveversal for all values ot in the range studied.

FIG. 1. lllustration showing a possible scenario in which the
centers of a pair of clusters falling at a relative speeduv;| come

inertial and Stokes regimes whefeakes the forms For x<1 the qualitative form of¢(x) was found to fall
. . into two distinct categories depending on the valuexoFor
HR) ~ {Rﬁ for inertial flow}. 3) a?% the distribution appears to diverge as a power law,
R. for viscous flow $(x—0)~x"7, as shown in Fig. 2 foe=0.55. The exponent

7 was found to be approximately constantat1.6+0.1
over the range; <a<3. For a<j3 the distribution was
F5und to be peaked, with a maximum at some small gjze
Pollowed by a power law decay for,<x<<1.

Comparison with other aggregation models suggests that
the clusters produced are likely to be fractal in their geom-

Vk( mg)a etry, and in particular cluster mass aifaveragge radius

We consider below the general forffRe)~Ré’“, with « as

an adjustable parameter in order gain understanding spa
ning the two extreme regimes. Setting the drag force equal t
the weightmg of the cluster, the terminal velocity is then
given by

v 12 (4)  should be in a power law relationship~ r% whered; is the
K fractal dimension. A log plot of radius of gyration against

where a:% for inertial flow anda=1 for viscous flow. A mass for all the clusters produced over the course of the
more complete discussion of the fall speed is given bysimulation is shown in Fig. 3. Also shown in this figure is the
Mitchell [5], but providedd;=2 so that cluster projected logarithmic derivative of the above plot, which shows the
area scales as the square of cluster radius, this reduces to/a@riation in the apparent fractal dimension of the clusters
simple crossover between the above limits. The empiricaWith size. From this plot, it seems that the fractal dimension
crossover is very slow, spread over some three decades approaches an asymptotic valuenas- «; in the case shown
Reynolds number, so fixed intermediate valuesc@fan rea- (a=0.55 we estimate this value a=2.2+0.1. The value
sonably approximate behavior over a significant raigeln  of this limiting fractal dimension was found to vary withas
our simulations we took the radius determining the fall ve-shown in Fig. 4. Note that our assumptidy®= 2, required to
locity to be proportional to the radius of gyration, and in oursupport the assumed fall speed relationship, is indeed satis-
theoretical calculations we simply used the same nomindiied for the physical range=1/2.
radii as for the collision cross sections above.

Ill. COMPUTER SIMULATIONS AND RESULTS IV. THEORY

The primary particles used at the beginning of the simu- The most common theory used to describe cluster-cluster
lations were rods of zero thickness, half of which had aaggregation problems is that of von Smoluchows$Ki,
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FIG. 2. Scaling of the cluster mass distribution. The left panel shows how the rescaled cluster size disifibstidt,(t) converges
to a universal function of rescaled cluster sizem/s(t), where the data are overlayed for different values of the weight average cluster size,
s(t)=20,50,150,400. The scales are logarithmic and a least squaredxfit-x 16 for x<1072 is shown by the dashed line. In the
right-hand panel; ¢(x')dx’ is shown on a semilog plot, illustrating the exponential tdéshed line is intended to guide the pyBoth
simulations began with 250 000 rods, and uaed.55 in the sedimentation low.

which provides a set of mean-field rate equations for the To apply this theory we need to compute the reaction rates
evolution of the cluster mass distribution, Kij, which means averaging collision rate with respect to
cluster geometry at fixed masses. This we estimate by sub-
stituting averages from fractal scaling for the radii in ED).

for the close approach rate and Kd) for the fall speeds,
and assuming constant collision efficiency leading to

(7)
whereny(t) is the number of clusters of maksat timet (per ' o N
unit volume. The kernekK;; contains the physics of the prob- Van bongen and Ernsts analysis is sensitive to two expo-
lem, being a symmetric matrix, the elements of which gover'€Nts c_:harapterlzmg the scaling of the coagulation kernel in
the rate of aggregation between pairs of clusters expressé@e limit 1<i<j,

dnt) 1

i 2 > Kimi(ny(t) - nk(t)zl Kign;(1), (6)

i+j=k i=
Kij _~ |ia_1/df _ ja—l/df|(i1/df + jl/df)Z.

(only) in terms of their masseisand j. Analytical solutions Ki; ~ i#]” (8)
of Smoluchowski's equations have not been obtained except .

for a few special cases df;;. However, Van Dongen and Which in our case yields

Ernst[8] _have shown that for nong_elling ke_rneglsee below w=min(0,a - d;l)' 9)
the solutions approach the dynamical scaling form of (&y.

in the large-mass, large-time limit; substituting this into Eq. »=max(a +d;L, 2d7Y). (10)

(6) allows one to obtain some information about the

asymptotic behavior of the rescaled cluster size distribution third exponent combination =u+v=a+d;* controls the

P(x).
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saf T T T T T T agreement up ter= 2. For o> % the theoretical prediction is
s2f . that d;=3 and v=a+3>1, but because of its somewhat
pathological nature we have not attempted to make simula-
tions in this regime. It is however clear from the extrapola-
tion of our results in Fig. 4 that this is likely to hold.

Obtaining an exact form for the cluster size distribution
¢(x) is a nontrivial exercise. However, following the meth-
odology of Van Dongen and Erng], we consider the small-
x behavior of ¢(x) when d;<a™?! (i.e., ©<0). In such a
regime the smalk behavior is dominated by collisions be-
tween clusters of disparate sizes; the gain term in the Smolu-
2 chowski equations may therefore be neglected, and one at-
R S S R T R tempts to solve the integrodifferential equatiarix¢’(x)
01 02 03 04 05 06 +2¢(X)]= d(x) [oK(X,y)d(y)dy. For x<vy, the kernel (7)

o may be approximated ti(x,y) =x*y’-y*, and one obtains
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FIG. 4. Variation of the fractal dimension as a function of the ~ X“p,
parameterr. Circles are simulation data, solid line indicates theo- d(X) =X7 ex W ) (12
retical prediction. K

wherep; is theith moment of the rescaled distributi@i(x),

equations(t) =ws(t)*, wherew is a constant, and for the non- and the exponent is given by 7=2+p,w™%. It is clear that
gelling case we require<1. lim, . [#(x)]=0. As x increases from zerog(x) also in-

Our identification of the exponentis crucial to a mecha- creases, until reaching a maximum x{=(w/p,)"*. For
nism by which the fractal dimension can control the dynam-x, <x<1 the distribution has an approximately algebraic
ics. If the fractal dimension is low enough, then the exponentiecay ¢(x) ~x ™. This bell-shaped curve is consistent with
v will exceed unity. However, Van Dongei®] has shown  the behavior seen in the computer simulations whenz.
that the Smoluchowski equations predict the formation of an | the cased;> a2, it has been showi8] that for all
infinite cluster instantly in such a situation. In a finite systemyernels withu=0, v<1 the cluster size distribution diverges
this clearly cannot occur, and it simply means that a fewgsx— 0 with the form
clusters will quickly become much larger than the others
with their growth dominated by accretion of small ones. In d(x) ~ X7, (13
this scgngrio th? growth of the Iarge.clusters approaches thWhere r=2-p,w L. This behavior is consistent with the
of ballistic parUcIe-chster aggregation, Wherg I hE.‘S beensimulation fora=3. The change in the qualitative shape of
shown by Ball and Witterj10] that the fractal dimension of 2 . .
the clusters produced tends dg=3. This increased fractal $(x<1) arounde=; then is further evidence to suggest that

. - . the system selects to sit at1.
dimension reduces the value of forcing it back to a value .
of 1 if a=Z. Through this feedback mechanism, a bound is_ | "'e Shape of(x>1) has also been studied by van Don-

placed on the fractal dimensiot=max2,(1-a)"] for gen and Erns{11]. They have shown that for nongelling

a<2 kernels, the tail of the distribution is expected to take the
<3

The system could perhaps settle in a state whetel. form

However, the growth in such a regime is much less biased d(x) ~ x e, (14)

towards collisions between clusters of disparate sizes, and )
the distribution is relatively monodisperse. This would tend/here ¢ and é are constants. This would appear to be con-
to make collisions between clusters of a similar size likely sistent with the behavior observed in the simulations for all

leading to much more open structures, with a lower fracta}/@lues ofa, providing an exponentially dominated cutoff at

dimension, in turn acting as a feedback mechanism to in‘@'9€X.
crease the value of. The authors suggest that, at least over
some range of;, this effect will force the system towards the
v=1 state. The discontinuity in the polydispersity of the sys-
tem atv=1 forces the system to organize itself such that it The principle motivation for the model presented in this
can remain at that point. This is similar to the argument pupaper was to attempt to understand some of the properties of
forward by Ballet al. [3] for reaction limited aggregation.  Cirrus clouds. These are high altitude clouds with a base
If it is accepted that— 1 then the fractal dimension of betwen 5500 and 14000 meters and they are usually com-
the clusters produced should be directly predictable from Egposed solely of ice crystalgl2]. Amongst others, Heyms-
(10, field and Platt[13] have observed that the ice crystals in
d=maf2,(1-a)Y, a< % (11) these clouds are predominantly composed of columns, bul-
lets, bullet-rosettes, and aggregates of these crystal types. It
A curve showing this theoretical behavior is superimposeds these aggregates which we hope to model, since the domi-
on the simulation data in Fig. 4, and appears to show goodant mechanism by which they grow is believed to be

V. APPLICATION TO SNOWFLAKE FORMATION
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FIG. 5. Projected images @#) ice crystal aggregates obtained ) ) D, ) )
using a cloud particle imag&iCPI, SPEC Inc., USAduring an FIG. 6. Aspect ratio of simulation clusters as a function of their

aircraft flight through a Cirrus cloud at temperatures betweerM@Ximum dimension. The curve seems to approach an asymptotic
—44°C to —-47°C, andb) sample clusters from our simulations. value of=0.65, independent of the initial conditions used: here we
show data for both rods and rosettes.

through differential sedimentatio¢e.g., Field and Heyms-

field [14]). We therefore ignore the effects of diffusional function of D as shown in Fig. 6. The ratio quickly ap-
growth, turbulence, mixing, and particle breakup, in order toproaches an asymptotic value of approximately 0.65+0.05.
concentrate on the effects of this mechanism alone. The Reyrhis compares well to the measurements of Korolev and
nolds number for aggregates of a few crystals is typicallylsaac[16], where the ratio seems to approach a value of
between=10-100 which should to be modelled acceptably=0.6—-0.7.

by our inertial flow approximation. Because we have not Finally, the shape of the snowflake distribution of linear
modelled the detailed hydrodynamics we may also be ignorsize may also be compared with experiment. Field and
ing subtleties such as wake capture. Heymsfield[14] presented particle size distributions of the

All of the results below are presented for the purely iner-maximum lengthD of ice particles in a Cirrus cloud. The
tial regime(assumed to be the most relevant to this problemdata were obtained with an aircraft and represent in-cloud
where a:%_ The initial particles were rods of zero averages of particle size distributiogsumber per unit vol-
thickness—however, the asymptotic behavior is anticipatetdme per particle size bin widthalong 15 km flight tracks
to be insensitive to the initial conditions, and indeed by run+anging from an altitude of 9500 ®50°C) to 6600
ning the simulation with bullet rosettes for the initial par- m(—28°C). To compare this data to the distributions ob-
ticles (three rods, crossing one another at right anglestained from simulation, we first normalize the data, and then
through a common centemo change in the end results were make use of the dynamical scaling fo(®), to collapse the
found, only in the approach to scaling. distributions onto a single curve. Details of this are given in

Ice crystal aggregates have been studied through the ugiee appendix to this paper. The resulting histograms are
of cloud particle imagers during aircraft flights through ice shown in Fig. 7 and appear to show quite good agreement,
clouds. Sample images from such a flight are shown in Figgiven the level of approximation present in our model.

5, alongside some of our simulation clusters. Using this ex-

perimental data, the geometry and size distribution of ice

particles in these clouds has been studied, allowing for quan- VI. DISCUSSION AND CONCLUSIONS
titative comparison between theory and experiment.

The fractal dimension of snowflakes in Cirrus may be A simple mean-field model of aggregation by differential
inferred from the work of Heymsfielét al. [15]. By mea- sedimentation of particles in an inertial flow regime has been
suring the effective density, of bullet and bullet-rosette constructed, simulated by computer, and analyzed theoreti-
aggregates as a function of their maximum linear dimensiowally in terms of the Smoluchowski equations. It has been
D, and fitting a power law to their data, they found the rela-shown that there is strong numerical evidence, in addition to
tionship p.~D™%%, This scaling implies that the aggregates a theoretical argument, to back up the idea that the polydis-
have a fractal dimension af=2.04, which is consistent with persity of the distribution and the fractal dimension feedback
the values predicted by our mod&imulation giving d; on one another in such a way as to stabilize the system at
=2.05+0.1 and theory giving;=2). v=1. Above this value, the dominance of collisions between

The aspect ratio of the clusters may also be calculated:lusters of very different sizes is so great as to pdgsko-
Random projections of simulation clusters were taken. Thevards a value of 3. This in turn pulls the exponenback
maximum dimension of the projectidd was measured, as down to unity. Forv<<1 the system is quite monodisperse,
was the maximum dimension in the direction perpendicularesulting in relatively many collisions between clusters of
to that longest axisD,,. The ratio of these two spans were similar sizes, and the fractal dimension is reduced, foreing
binned by maximum dimension, averaged, and plotted as kack up. The discontinuity in the shape of the distribution
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Experiment

3

(D*) dN/dD [M(2)]

3

FIG. 7. The left-hand panel shows the distribution of clusters by linear size at various stages of the simulation, rescaled in such a way
as to collapse the dataee appendix Initial conditions were 250 000 rods and the parameteras set to a value cé‘ The right-hand panel
is a test of the same scaling using the experimental data presented by Field and Heyfifield

aroundv=1 is thought to provide the mechanism by which APPENDIX: SCALING OF THE CLUSTER
the system can stabilize at that point. RADIUS DISTRIBUTION
If it is accepted thatv— 1, then the fractal dimension of

. ; Experiments have reported the distribution of ice aggre-
the clu'sters prqduced may be pr¢d|ct¢d, and Fig. 4 ShOWSates by linear span rather than by mass, and we present here
that this prediction agrees well with simulation results for

_ 2 , X ) how that distribution dI/dD should naturally be rescaled.
0= a=3. The sudden change in the behaviodgia) and in - T tests the dynamical scaling ansatz which, for the mass
the smallx form of the cluster size distribution around  jistribution gave N/dm=n_=s24(m/s), where a=2 in

_l . . . . X o i
=3 Is strong evidence for the self-organization proposed bemass-conserving systems. We anticipate fractal scaling so

tweend; and . _ _ _ thatm~ D% and hence,

For a> 3 the system is forced into a regime where 1,
which has been regarded as unphysical because the Smolu- dN — Ddf—ls—a¢<m> (A1)
chowski Equation(6) predicts infinite clusters in zero time dD s/’

[9]. In the light of our results this regime merits further study

beyond the Smoluchowski equation approximafid#. The From this expression we may calculate the moments of the

. . . — b .
valuea=1 is given by viscous flow, but here our form foy distribution M(b) = [(dN/dD)D°dD in terms of the average

does not include all of the relevant physics: in particular,cluster massit),

small clusters may be caught in the fluid flow, and swept o

around larger clusters rather than hitting them, reducing the M(b) ~ S_a+l+b/dff X2 p(x)dlX, (A2)
dominance of big-little collisions. This has been discussed in s

more detalil for the particle-cluster aggregation case by Warghere x=m/s. At small sizes we expecip(x)~x". If

renetal.[18]. _ , b>d,(7—1) therefore, the integral converges ss>, and
The application of the model to the formation of ice crys- M(b) ~ 572104 From our simulations, we have measured

tal aggregates in Cirrus clouds has been considered: the frag—z1 6. di=2 .and so the lowest int’eger moment which

tal dimension, aspect ratio, and shape of the cluster size diE- UL

— . : cales in this way is the second. We therefore choose this to
tribution seen in the model were all found to be consisten :

) i L S ormalize our data,
with experimental data. This is a promising indication that
the ideas presented in this paper may be an acceptable model

dN m

-1V Ndelem1-26ds g L
for the essential physics of snowflake aggregation in Cirrus. [M(2)] dD Ds f¢< S) (A3)
which, defining the average cluster diameted”
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