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A simple model of irreversible aggregation under differential sedimentation of particles in a fluid is pre-
sented. The structure of the aggregates produced by this process is found to feed back on the dynamics in such
a way as to stabilize both the exponents controlling the growth rate, and the fractal dimension of the clusters
produced at readily predictable values. The aggregation of ice crystals to form snowflakes is considered as a
potential application of the model.
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I. INTRODUCTION

Simple models of cluster-cluster aggregation have been
the focus of a great deal of interest, particularly over the last
two decades. The structure of aggregates formed through a
variety of dominating mechanisms(e.g., diffusion limited
[2], reaction limited[3], and ballistic motion[4]) have been
studied through theoretical, experimental, and computational
work.

Another aggregation mechanism which is relevant to sev-
eral physical systems is that of differential sedimentation.
Particles with a range of size and/or shape will almost inevi-
tably sediment through a fluid at different speeds under the
influence of gravity, leading to collisions. If there is some
mechanism by which the particles stick on contact then ag-
gregates will be formed. An example of this kind of phenom-
enon is the aggregation of ice crystals in Cirrus clouds. Small
pristine ice particles are formed at the top of the cloud, and
proceed to fall through it, colliding with one another and
sticking to produce aggregates(snowflakes).

The aim of this paper is to provide a simple model for
growth by differential sedimentation which captures the es-
sential physics of the system in the inertial flow regime, and
to consider its application to snowflake formation. It is di-
vided into five main parts—a description of the model and
the assumptions underlying it; details of computer simula-
tions and the results obtained from them; a theory section
which offers an argument to account for the behavior ob-
served in the simulations; an investigation of the model’s
applicability to snowflake formation; and a concluding dis-
cussion. The simulation results and their comparison to real
cloud data have been presented briefly in a separate paper
[1].

II. MODEL

We focus on the dilute limit, where the mean free path
between cluster-cluster collisions is large compared to the

nearest neighbor distance between clusters. In this regime we
can limit our interest to individual binary collision events,
ignoring spatial correlation. As further simplifying approxi-
mations, we assume that clusters have random orientations
which do not significantly change during a close encounter,
that collsion trajectories are undeflected by hydrodynamic
interaction, and that any cluster-cluster contacts result in a
permanent and rigid junction.

In order to sample the collisions between clusters, we first
formulate a rate of close approach. For any two clustersi, j
with nominal radii(see below) r i andr j, respectively, and fall
speedsvi, v j, the frequency with which their centers pass
closer than a distancesr i +r jd is proportional to the total area
over which trajectories yielding a close approach event are
possible, and the relative speed of the pair. This is illustrated
in Fig. 1. The rate constant for approach closer than center-
to-center separationsr i +r jd is therefore given by

Gi j = psr i + r jd2uvi − v ju. s1d

In our computer simulations the nominal radii are chosen to
fully enclose each cluster and the close approach rate calcu-
lated above is exploited to preselect candidate collision
events. Collisions are accurately sampled by sequentially
choosing pairs of clusters with probability proportional to
Gi j , checking each pair for collision along one randomly
sampled close approach trajectory, and correspondingly join-
ing that cluster pair if they do indeed collide. In the theoret-
ical arguments presented in Sec. IV, we make the simplifying
assumption that all close approaches lead to collisions(or at
least a fixed fraction of them do), using nominal radii based
on fractal scaling from the cluster masses.

The model is completed by an explicit form for the fall
speeds entering Eq.(1). We assume that the clusters are at
most only partially penetrated by the fluid flow past them, so
that cluster radius is the relevant length governing the drag
force law. Then qualitatively and by dimensional argument
we expect the same drag behavior as for a falling sphere,
which may be written in the form

PHYSICAL REVIEW E 70, 021403(2004)

1539-3755/2004/70(2)/021403(7)/$22.50 ©2004 The American Physical Society70 021403-1



Fd = rnkfsRed, s2d

where f is a function of the Reynolds numberRe=rv /nk
alone,r is the density of the surrounding fluid, andnk is the
kinematic viscosity. Although details of the functionfsRed
should be different from spheres, we still expect to have
inertial and Stokes regimes wheref takes the forms

fsRed , HRe
2 for inertial flow

Re for viscous flow
J . s3d

We consider below the general formfsRed,Re
1/a, with a as

an adjustable parameter in order gain understanding span-
ning the two extreme regimes. Setting the drag force equal to
the weightmg of the cluster, the terminal velocity is then
given by

v ,
nk

r
Smg

rnk
2Da

, s4d

where a= 1
2 for inertial flow anda=1 for viscous flow. A

more complete discussion of the fall speed is given by
Mitchell [5], but provideddf ù2 so that cluster projected
area scales as the square of cluster radius, this reduces to a
simple crossover between the above limits. The empirical
crossover is very slow, spread over some three decades of
Reynolds number, so fixed intermediate values ofa can rea-
sonably approximate behavior over a significant range[5]. In
our simulations we took the radius determining the fall ve-
locity to be proportional to the radius of gyration, and in our
theoretical calculations we simply used the same nominal
radii as for the collision cross sections above.

III. COMPUTER SIMULATIONS AND RESULTS

The primary particles used at the beginning of the simu-
lations were rods of zero thickness, half of which had a

length (and mass) of unity, and half of which were twice as
long and massive. Purely monodisperse initial conditions are
not possible in this model, sinceuvi −v ju would be zero. Apart
from this special case however, it is anticipated that the
asymptotic behavior of the system should be insensitive to
the initial distribution, and indeed the results described in
this section appear to be preserved for a variety of starting
conditions.

In aggregation models it is typically the case(e.g., Vicsek
and Family[6]) that after the distribution has had time to
forget its initial conditions it will approach a universal shape.
This is usually expressed by the dynamical scaling ansatz,
which states that asm,s→`,

nmstd = sstd−2fF m

sstdG , s5d

wherenmstd is the number of clusters of massm at time t,
and the rescaled distributionf is a function ofx=m/sstd
alone. The quantitysstd is a characteristic cluster mass, and
for nongelling systems one expects that a suitable choice is
given by the weight average cluster mass,sstd=oimi

2/oimi.
Using this choice our simulation data conform well to scal-
ing, as shown in the left panel of Fig. 2.

The shape of the rescaled distribution was studied. A plot
of ex

`fsx8ddx8 as a function ofx is shown in the right panel
of Fig. 2 and shows an exponential decay for very largex,
with a superexponential behavior taking over asx ap-
proaches unity from above. This behavior appears to be uni-
versal for all values ofa in the range studied.

For x!1 the qualitative form offsxd was found to fall
into two distinct categories depending on the value ofa. For
aù

1
2 the distribution appears to diverge as a power law,

fsx→0d,x−t, as shown in Fig. 2 fora=0.55. The exponent
t was found to be approximately constant att.1.6±0.1
over the range1

2 øaø
2
3. For a,

1
2 the distribution was

found to be peaked, with a maximum at some small sizexm,
followed by a power law decay forxm!x!1.

Comparison with other aggregation models suggests that
the clusters produced are likely to be fractal in their geom-
etry, and in particular cluster mass and(average) radius
should be in a power law relationshipm, rdf wheredf is the
fractal dimension. A log plot of radius of gyration against
mass for all the clusters produced over the course of the
simulation is shown in Fig. 3. Also shown in this figure is the
logarithmic derivative of the above plot, which shows the
variation in the apparent fractal dimension of the clusters
with size. From this plot, it seems that the fractal dimension
approaches an asymptotic value asm→`; in the case shown
sa=0.55d we estimate this value asdf .2.2±0.1. The value
of this limiting fractal dimension was found to vary witha as
shown in Fig. 4. Note that our assumptiondf ù2, required to
support the assumed fall speed relationship, is indeed satis-
fied for the physical rangeaù1/2.

IV. THEORY

The most common theory used to describe cluster-cluster
aggregation problems is that of von Smoluchowski[7],

FIG. 1. Illustration showing a possible scenario in which the
centers of a pair of clusters falling at a relative speeduvi −v ju come
within a distancesr i +r jd of one another(a close approach). The
shaded circle illustrates the total area encompassing all possible
close approach trajectories =psr i +r jd2.
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which provides a set of mean-field rate equations for the
evolution of the cluster mass distribution,

dnkstd
dt

=
1

2 o
i+j=k

Kijnistdnjstd − nkstdo
j=1

`

Kkjnjstd, s6d

wherenkstd is the number of clusters of massk at timet (per
unit volume). The kernelKij contains the physics of the prob-
lem, being a symmetric matrix, the elements of which govern
the rate of aggregation between pairs of clusters expressed
(only) in terms of their massesi and j . Analytical solutions
of Smoluchowski’s equations have not been obtained except
for a few special cases ofKij . However, Van Dongen and
Ernst[8] have shown that for nongelling kernels(see below)
the solutions approach the dynamical scaling form of Eq.(5)
in the large-mass, large-time limit; substituting this into Eq.
(6) allows one to obtain some information about the
asymptotic behavior of the rescaled cluster size distribution
fsxd.

To apply this theory we need to compute the reaction rates
Kij , which means averaging collision rate with respect to
cluster geometry at fixed masses. This we estimate by sub-
stituting averages from fractal scaling for the radii in Eq.(1)
for the close approach rate and Eq.(4) for the fall speeds,
and assuming constant collision efficiency leading to

Kij , uia−1/df − ja−1/dfusi1/df + j1/dfd2. s7d

Van Dongen and Ernst’s analysis is sensitive to two expo-
nents characterizing the scaling of the coagulation kernel in
the limit 1! i ! j ,

Kij , im jn s8d

which in our case yields

m = mins0,a − df
−1d, s9d

n = maxsa + df
−1,2df

−1d. s10d

A third exponent combinationl=m+n=a+df
−1 controls the

growth of the average cluster mass through the differential

FIG. 2. Scaling of the cluster mass distribution. The left panel shows how the rescaled cluster size distributionf=sstd2nmstd converges
to a universal function of rescaled cluster sizex=m/sstd, where the data are overlayed for different values of the weight average cluster size,
sstd=20,50,150,400. The scales are logarithmic and a least squared fitfsxd,x−1.6 for xø10−2 is shown by the dashed line. In the
right-hand panelex

`fsx8ddx8 is shown on a semilog plot, illustrating the exponential tail(dashed line is intended to guide the eye). Both
simulations began with 250 000 rods, and useda=0.55 in the sedimentation low.

FIG. 3. Left-hand panel shows
a log plot of radius of gyration as
a function of cluster mass fora
=0.55, averaged over four runs of
250 000 initial rods. Solid line in-
dicates the theoretical prediction
for the fractal dimension. The
right-hand panel shows the in-
ferred fractal dimension as a func-
tion of cluster mass. Error bars are
one standard deviation. Data
points with s.0.3 have not
plotted.
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equationṡstd=wsstdl, wherew is a constant, and for the non-
gelling case we requirelø1.

Our identification of the exponentn is crucial to a mecha-
nism by which the fractal dimension can control the dynam-
ics. If the fractal dimension is low enough, then the exponent
n will exceed unity. However, Van Dongen[9] has shown
that the Smoluchowski equations predict the formation of an
infinite cluster instantly in such a situation. In a finite system
this clearly cannot occur, and it simply means that a few
clusters will quickly become much larger than the others
with their growth dominated by accretion of small ones. In
this scenario the growth of the large clusters approaches that
of ballistic particle-cluster aggregation, where it has been
shown by Ball and Witten[10] that the fractal dimension of
the clusters produced tends todf =3. This increased fractal
dimension reduces the value ofn, forcing it back to a value
of 1 if aø

2
3. Through this feedback mechanism, a bound is

placed on the fractal dimensiondf ùmaxf2,s1−ad−1g for
aø

2
3.

The system could perhaps settle in a state wheren,1.
However, the growth in such a regime is much less biased
towards collisions between clusters of disparate sizes, and
the distribution is relatively monodisperse. This would tend
to make collisions between clusters of a similar size likely,
leading to much more open structures, with a lower fractal
dimension, in turn acting as a feedback mechanism to in-
crease the value ofn. The authors suggest that, at least over
some range ofa, this effect will force the system towards the
n=1 state. The discontinuity in the polydispersity of the sys-
tem atn=1 forces the system to organize itself such that it
can remain at that point. This is similar to the argument put
forward by Ballet al. [3] for reaction limited aggregation.

If it is accepted thatn→1 then the fractal dimension of
the clusters produced should be directly predictable from Eq.
(10),

df = maxf2,s1 − ad−1g, a ø
2
3 . s11d

A curve showing this theoretical behavior is superimposed
on the simulation data in Fig. 4, and appears to show good

agreement up toa. 2
3. For a.

2
3 the theoretical prediction is

that df =3 and n=a+ 1
3 .1, but because of its somewhat

pathological nature we have not attempted to make simula-
tions in this regime. It is however clear from the extrapola-
tion of our results in Fig. 4 that this is likely to hold.

Obtaining an exact form for the cluster size distribution
fsxd is a nontrivial exercise. However, following the meth-
odology of Van Dongen and Ernst[8], we consider the small-
x behavior of fsxd when df ,a−1 (i.e., m,0). In such a
regime the small-x behavior is dominated by collisions be-
tween clusters of disparate sizes; the gain term in the Smolu-
chowski equations may therefore be neglected, and one at-
tempts to solve the integrodifferential equationwfxf8sxd
+2fsxdg=fsxde0

`Ksx,ydfsyddy. For x!y, the kernel (7)
may be approximated toKsx,yd.xmyn−yl, and one obtains

fsxd = x−t expFxmpn

wm
G , s12d

wherepi is the ith moment of the rescaled distributionfsxd,
and the exponentt is given byt=2+plw−1. It is clear that
limx→0ffsxdg=0. As x increases from zero,fsxd also in-
creases, until reaching a maximum atxm=swt /pnd1/m. For
xm!x!1 the distribution has an approximately algebraic
decayfsxd,x−t. This bell-shaped curve is consistent with
the behavior seen in the computer simulations whena,

1
2.

In the casedf .a−1, it has been shown[8] that for all
kernels withm=0, nø1 the cluster size distribution diverges
asx→0 with the form

fsxd , x−t, s13d

where t=2−plw−1. This behavior is consistent with the
simulation foraù

1
2. The change in the qualitative shape of

fsx!1d arounda= 1
2 then is further evidence to suggest that

the system selects to sit atn=1.
The shape offsx@1d has also been studied by Van Don-

gen and Ernst[11]. They have shown that for nongelling
kernels, the tail of the distribution is expected to take the
form

fsxd , x−ue−dx, s14d

whereu and d are constants. This would appear to be con-
sistent with the behavior observed in the simulations for all
values ofa, providing an exponentially dominated cutoff at
largex.

V. APPLICATION TO SNOWFLAKE FORMATION

The principle motivation for the model presented in this
paper was to attempt to understand some of the properties of
Cirrus clouds. These are high altitude clouds with a base
betwen 5500 and 14000 meters and they are usually com-
posed solely of ice crystals[12]. Amongst others, Heyms-
field and Platt[13] have observed that the ice crystals in
these clouds are predominantly composed of columns, bul-
lets, bullet-rosettes, and aggregates of these crystal types. It
is these aggregates which we hope to model, since the domi-
nant mechanism by which they grow is believed to be

FIG. 4. Variation of the fractal dimension as a function of the
parametera. Circles are simulation data, solid line indicates theo-
retical prediction.
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through differential sedimentation(e.g., Field and Heyms-
field [14]). We therefore ignore the effects of diffusional
growth, turbulence, mixing, and particle breakup, in order to
concentrate on the effects of this mechanism alone. The Rey-
nolds number for aggregates of a few crystals is typically
between.10–100 which should to be modelled acceptably
by our inertial flow approximation. Because we have not
modelled the detailed hydrodynamics we may also be ignor-
ing subtleties such as wake capture.

All of the results below are presented for the purely iner-
tial regime(assumed to be the most relevant to this problem)
where a= 1

2. The initial particles were rods of zero
thickness—however, the asymptotic behavior is anticipated
to be insensitive to the initial conditions, and indeed by run-
ning the simulation with bullet rosettes for the initial par-
ticles (three rods, crossing one another at right angles,
through a common center), no change in the end results were
found, only in the approach to scaling.

Ice crystal aggregates have been studied through the use
of cloud particle imagers during aircraft flights through ice
clouds. Sample images from such a flight are shown in Fig.
5, alongside some of our simulation clusters. Using this ex-
perimental data, the geometry and size distribution of ice
particles in these clouds has been studied, allowing for quan-
titative comparison between theory and experiment.

The fractal dimension of snowflakes in Cirrus may be
inferred from the work of Heymsfieldet al. [15]. By mea-
suring the effective densityre of bullet and bullet-rosette
aggregates as a function of their maximum linear dimension
D, and fitting a power law to their data, they found the rela-
tionshipre,D−0.96. This scaling implies that the aggregates
have a fractal dimension ofdf =2.04, which is consistent with
the values predicted by our model(simulation giving df
=2.05±0.1 and theory givingdf =2).

The aspect ratio of the clusters may also be calculated.
Random projections of simulation clusters were taken. The
maximum dimension of the projectionD was measured, as
was the maximum dimension in the direction perpendicular
to that longest axis,Dw. The ratio of these two spans were
binned by maximum dimension, averaged, and plotted as a

function of D as shown in Fig. 6. The ratio quickly ap-
proaches an asymptotic value of approximately 0.65±0.05.
This compares well to the measurements of Korolev and
Isaac [16], where the ratio seems to approach a value of
.0.6–0.7.

Finally, the shape of the snowflake distribution of linear
size may also be compared with experiment. Field and
Heymsfield[14] presented particle size distributions of the
maximum lengthD of ice particles in a Cirrus cloud. The
data were obtained with an aircraft and represent in-cloud
averages of particle size distributions(number per unit vol-
ume per particle size bin width) along 15 km flight tracks
ranging from an altitude of 9500 ms−50°Cd to 6600
ms−28°Cd. To compare this data to the distributions ob-
tained from simulation, we first normalize the data, and then
make use of the dynamical scaling form(5), to collapse the
distributions onto a single curve. Details of this are given in
the appendix to this paper. The resulting histograms are
shown in Fig. 7 and appear to show quite good agreement,
given the level of approximation present in our model.

VI. DISCUSSION AND CONCLUSIONS

A simple mean-field model of aggregation by differential
sedimentation of particles in an inertial flow regime has been
constructed, simulated by computer, and analyzed theoreti-
cally in terms of the Smoluchowski equations. It has been
shown that there is strong numerical evidence, in addition to
a theoretical argument, to back up the idea that the polydis-
persity of the distribution and the fractal dimension feedback
on one another in such a way as to stabilize the system at
n=1. Above this value, the dominance of collisions between
clusters of very different sizes is so great as to pushdf to-
wards a value of 3. This in turn pulls the exponentn back
down to unity. Forn,1 the system is quite monodisperse,
resulting in relatively many collisions between clusters of
similar sizes, and the fractal dimension is reduced, forcingn
back up. The discontinuity in the shape of the distribution

FIG. 5. Projected images of(a) ice crystal aggregates obtained
using a cloud particle imager(CPI, SPEC Inc., USA) during an
aircraft flight through a Cirrus cloud at temperatures between
−44°C to −47°C, and(b) sample clusters from our simulations.

FIG. 6. Aspect ratio of simulation clusters as a function of their
maximum dimension. The curve seems to approach an asymptotic
value of.0.65, independent of the initial conditions used: here we
show data for both rods and rosettes.
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aroundn=1 is thought to provide the mechanism by which
the system can stabilize at that point.

If it is accepted thatn→1, then the fractal dimension of
the clusters produced may be predicted, and Fig. 4 shows
that this prediction agrees well with simulation results for
0øaø

2
3. The sudden change in the behavior ofdfsad and in

the small-x form of the cluster size distribution arounda
= 1

2 is strong evidence for the self-organization proposed be-
tweendf andn.

For a.
2
3 the system is forced into a regime wheren.1,

which has been regarded as unphysical because the Smolu-
chowski Equation(6) predicts infinite clusters in zero time
[9]. In the light of our results this regime merits further study
beyond the Smoluchowski equation approximation[17]. The
valuea=1 is given by viscous flow, but here our form forGi j
does not include all of the relevant physics: in particular,
small clusters may be caught in the fluid flow, and swept
around larger clusters rather than hitting them, reducing the
dominance of big-little collisions. This has been discussed in
more detail for the particle-cluster aggregation case by War-
ren et al. [18].

The application of the model to the formation of ice crys-
tal aggregates in Cirrus clouds has been considered: the frac-
tal dimension, aspect ratio, and shape of the cluster size dis-
tribution seen in the model were all found to be consistent
with experimental data. This is a promising indication that
the ideas presented in this paper may be an acceptable model
for the essential physics of snowflake aggregation in Cirrus.
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APPENDIX: SCALING OF THE CLUSTER
RADIUS DISTRIBUTION

Experiments have reported the distribution of ice aggre-
gates by linear span rather than by mass, and we present here
how that distribution dN/dD should naturally be rescaled.
This tests the dynamical scaling ansatz which, for the mass
distribution, gave dN/dm=nm=s−afsm/sd, where a=2 in
mass-conserving systems. We anticipate fractal scaling so
that m,Ddf and hence,

dN

dD
, Ddf−1s−afSm

s
D . sA1d

From this expression we may calculate the moments of the
distribution Msbd;esdN/dDdDbdD in terms of the average
cluster masssstd,

Msbd , s−a+1+b/dfE
1/s

`

xb/dffsxddx, sA2d

where x=m/s. At small sizes we expectfsxd,x−t. If
b.dfst−1d therefore, the integral converges ass→`, and
Msbd,s−a+1+b/df. From our simulations, we have measured
t.1.6, df .2, and so the lowest integer moment which
scales in this way is the second. We therefore choose this to
normalize our data,

fMs2dg−1dN

dD
, Ddf−1s−1−2/dffSm

s
D sA3d

which, defining the average cluster diameterD*

;Ms3d /Ms2d,s1/df yield

fMs2dg−1dN

dD
, sD*d−3cS D

D* D , sA4d

where csyd=ydf−1fsydfd. Hence, if we assume thatdf

approaches a constant value, plots ofhfMs2dg−1sdN/dDd
3sD*d3j againstsD /D*d should all lie on a single curve.

FIG. 7. The left-hand panel shows the distribution of clusters by linear size at various stages of the simulation, rescaled in such a way
as to collapse the data(see appendix). Initial conditions were 250 000 rods and the parametera was set to a value of12. The right-hand panel
is a test of the same scaling using the experimental data presented by Field and Heymsfield[14].

WESTBROOKet al. PHYSICAL REVIEW E 70, 021403(2004)

021403-6



[1] C. D. Westbrook, R. C. Ball, P. R. Field, and A. J. Heymsfield,
Geophys. Res. Lett.31, L15104(2004).

[2] P. Meakin, Phys. Rev. Lett.51, 1119(1983).
[3] R. C. Ball et al., Phys. Rev. Lett.58, 274 (1987).
[4] R. Jullien and M. Kolb, J. Phys. A17, L639 (1984).
[5] D. L. Mitchell, J. Atmos. Sci.53, 1710(1996).
[6] T. Vicsek and F. Family, Phys. Rev. Lett.52, 1669(1984).
[7] M. von Smoluchowski, Phys. Z.17, 585 (1916).
[8] P. G. J. Van Dongen and M. H. Ernst, Phys. Rev. Lett.54,

1396 (1985).
[9] P. G. J. Van Dongen, J. Phys. A20, 1889(1987).

[10] R. C. Ball and T. A. Witten, Phys. Rev. A29, 2966(1984).

[11] P. G. J. Van Dongen and M. H. Ernst, Physica A145, 15
(1987).

[12] H. R. Prupappacher and J. D. Klett,Microphysics of Clouds
and Precipitation, 2nd ed.(Kluwer, London, 1997).

[13] A. J. Heymsfield and R. Platt, J. Atmos. Sci.41, 846 (1984).
[14] P. R. Field and A. J. Heymsfield, J. Atmos. Sci.60, 544

(2003).
[15] A. J. Heymsfieldet al., J. Atmos. Sci.59, 3 (2002).
[16] A. Korolev and G. Isaac, J. Atmos. Sci.60, 1795(2003).
[17] R. C. Ball and C. D. Westbrook(in preparation).
[18] P. B. Warren, R. C. Ball and A. Boelle, Europhys. Lett.29,

339 (1995).

THEORY OF GROWTH BY DIFFERENTIAL… PHYSICAL REVIEW E 70, 021403(2004)

021403-7


